Investigation of the total petroleum hydrocarbon degrading microorganisms in soil and water: a metagenomic approach

Firouz Abbasian

Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy

Global Centre for Environmental Remediation Faculty of Science and Information Technology The University of Newcastle

September 2016

DECLARATION

I declare that:

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968.

Firouz Abbasian

Signed_____

9/9/2016 Date:

ACKNOWLEDGEMENTS

First and foremost, I wish to thank my supervisor, Professor Megharaj Mallavarapu, who showed incredible patience and passion to supervise me throughout my study. I appreciate all attentions and support he devoted to me. At the same time, I thank my co-supervisor, Professor Ravi Naidu, who in addition to his spiritual support, have successfully managed the research team in both GCER and CRC-CARE, including me, to lead the researches in a productive and dynamic direction. Furthermore, I would like to appreciate Dr Robin Lockington, University of South Australia, for all his support and guides throughout my lab works.

Most importantly, I appreciate all my family, especially Azita, Adro and my parents, for all their support and encouragement throughout this period of study. I owe them for all their patience and spiritual support.

I appreciate all the staff and students in GCER and CRC-CARE, who have assisted me anytime I needed their help. Because of creation of a nice and warm environment they have made in these institutes, there was like home for me where I feel safety and happiness. Last but not least, I appreciate the University of Newcastle and the government of Australia for the admission offer, APA scholarship and IPRS scholarship, which enabled me to reach this position.

List of Publications:

- F Abbasian, R Lockington, T. Palanisami, M Mallavarapu, R Naidu. (2016), Identification of a new operon involved in desulfurization of Dibenzothiophenes using a metagenomic study and cloning and functional analysis of the genes. Enzyme and Microbial Technology; 87: 24-28.
- 2) F Abbasian, R Lockington, T. Palanisami, K. Ramadass, M Mallavarapu, R Naidu (2016). Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnology Progress. Accepted.
- 3) F Abbasian, R Lockington, T. Palanisami, M Mallavarapu, R Naidu. (2016), The biodiversity changes in the microbial population of soils contaminated with crude oil. Current Microbiology. 72: 663-670.
- 4) F Abbasian, R Lockington, T. Palanisami, M Mallavarapu, R Naidu. (2016). A review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Applied biochemistry and biotechnology; 178 (2): 224-250.
- **5)** F Abbasian, R Lockington, T. Palanisami, M Mallavarapu, R Naidu. (2015). Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. Accepted (Science of total environment).
- 6) F Abbasian, R Lockington, M Mallavarapu, R Naidu. (2015). The integration of sequencing and bioinformatics in metagenomics. Reviews in Environmental Science and Bio/Technology; 14(3): 357-383.
- 7) F Abbasian, R Lockington, M Mallavarapu, R Naidu. (2015). A pyrosequencing-based analysis of microbial diversity governed by ecological conditions in the Winogradsky column. World Journal of Microbiology and Biotechnology; 31(7): 1115-1126.
- 8) F Abbasian, R Lockington, M Mallavarapu, R Naidu. (2015). A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Applied biochemistry and biotechnology; 176(3): 670-699.

TABLE OF	CONTENTS
----------	-----------------

Abstract		1
Chapter 1: Ii	ntroduction	2
Chapter 2. L	iterature review	4
2.1 Alipha	atic Hydrocarbon Biodegradation by Bacteria	4
2.1.1.	Introduction	4
2.1.2.	Uptake of hydrocarbons into microbial cells	5
2.1.3.	Metabolic shunts of n-Alkanes	6
2.1.4.	Metabolism of alkenes	11
2.1.5.	Branched chain alkanes	14
2.1.6	Cycloaliphatic compounds	15
2.1.7	Anaerobic hydrocarbon biodegradation	20
	2.1.7.1 Denitrifying bacteria	21
	2.1.7.2 Sulphate-reducing microorganisms	21
	2.1.7.3 Metal oxidizing microorganisms	22
	2.1.7.4 Intra-aerobic anaerobes	22
	2.1.7.5 Methanogenesis	23
	2.1.7.6 Anoxygenic sulphate dependent phototrophic bacteria	24
2.1.8.	The Biochemistry of Anaerobic Hydrocarbon biodegradation	24
	2.1.8.1 Fumarate Addition Reactions	24
	2.1.8.2 Oxygen-Independent Hydroxylation	27
	2.1.8.3 Carboxylation	28
	2.1.8.4 Unsaturated bond (Alkene and Alkyne) Hydration	28
	2.1.8.5 Reverse Methanogenesis	29
2.1.9.	Application of hydrocarbon degrading enzymes in biotechnology	30
	2.1.9.1 Chemicals and enzymes	30
	2.1.9.2 Bioremediation	31
	2.1.9.3 Biomarkers in oil biotechnology	32
2.1.10	. Conclusion	33
2.2 The G	enetics of Aliphatic and Aromatic Hydrocarbon Degradation	35
2.2.1	Introduction	35
2.2.2	The alkane degradation genes	36
2.2.3	Cycloaliphatic compounds	39

2.2.4	The plasmids containing naphthalene and salicylate degradation genes	40
2.2.5	The plasmids containing toluene and xylene oxidizing genes	45
2.2.6	Nitroaromatic compounds	50
2.2.7	Dibenzothiophene (DBT)	52
2.2.8	Anaerobic degradation of hydrocarbons	58
2.2.9	Anaerobic degradation of NACs	63
2.2.1	0 Genetics of microbial adaptation to high hydrocarbon concentrations	64
2.2.1	1 Conclusion	65
2.3 The	Integration of Sequencing and Bioinformatics in Metagenomics	67
2.3.1	Introduction	67
2.3.2	Technical basis of metagenomics	68
2.3.3	Bioinformatics and Metagenomics	75
2.3.4	Applications of metagenomics in ecological studies	85
2.3.5	Applications of metagenomics in clinical studies	89
2.3.6	Application of metagenomic approach in biotechnology	92
2.3.7	Conclusion	95
Chapter 3.	Experiments	98
3.1 A py	rosequencing-based analysis of microbial diversity governed by ecolo	gical
conditions i	n the Winogradsky column	97
3.1.1	Abstract	97
3.1.2	Introduction	97
3.1.3	Material and method	99
	3.1.3.1 Preparation of the Winogradsky column	99
	3.1.3.2 DNA extraction and Pyrosequencing process	100
	3.1.3.3 Analysis of data	101
	3.1.3.4 Nucleotide sequence accession numbers	102
3.1.4	Results	102
	3.1.4.1 Sequencing data	103
	3.1.4.2 Alpha diversity	103
	3.1.4.3 Classification of microorganisms based on their physiology	103
	3.1.4.4 Classification of microorganisms based on their respira	itory
mech	nanism	105

•	3.1.5	Discussion	111
3.2 Effe	ects of	crude oil contamination on microbial diversity in the Winogradsk	y column
as a fre	sh wat	ter lake biome	118
-	3.2.1 A	bstract	118
	3.2.2 Introduction		118
•	3.2.3	Material and methods	120
		3.2.3.1 Preparation of the Winogradsky column and oil spiking	120
		3.2.3.2. TPH analysis in the crude oil contaminated sediments	120
		3.2.3.3 DNA extraction and pyrosequencing process	121
		3.2.3.4 Pyrosequencing data analysis	122
		3.2.3.5 Nucleotide sequence accession numbers	122
•	3.2.4	Results and discussion	122
3.3 The	biodiv	versity changes in the microbial population of soils contaminated w	ith crude
oil			136
	3.3.1 A	bstract	136
	3.3.2 Introduction 3.3.3 Material and methods		136
			137
		3.3.3.1 Preparation of the column and oil spiking	137
		3.3.3.2 DNA extraction and Pyrosequencing process	138
		3.3.3 Data Analysis	138
		3.3.3.4 Nucleotide sequence accession numbers	139
•	3.3.4	Results	139
•	3.3.5	Discussion	145
3.4	Multiv	vall carbon nanotubes increase the microbial community in	crude oil
contam	inated	fresh water sediments	149
•	3.4.1	Abstract	149
•	3.4.2	Introduction	149
•	3.4.3	Material and methods	151
		3.4.3.1 Experimental setup	151
		3.4.3.2 DNA extraction and pyrosequencing process	152
		3.4.3.3 Data Analysis	152
		3.4.3.4 Nucleotide sequence accession numbers	153

	3.4.4	Results	153
	3.4.5	Discussion	163
3.5	Micro	bial diversity and hydrocarbon degrading gene capacity of a crude oil	field
soil a	s detern	nined by metagenomics analysis	168
	3.5.1	Abstract	168
	3.5.2	Introduction	168
	3.5.3	Material and methods	170
		3.5.3.1 TPH analysis	170
		3.5.3.2 DNA sequencing using Illumina Hiseq platform and data and	alysis
			171
		Nucleotide sequence accession numbers	172
	3.5.4	Results	172
		3.5.4.1 Gas chromatograph assays	172
		3.5.4.2 Statistics of reads produced by HiSeq Illumina	172
		3.5.4.3 The microbial communities in the crude oil well field	173
		3.5.4.4 Classification of microorganisms based on their metabolism	and
	respir	ration	173
	3.5.5	Discussion	179
	3.	5.4.1 Alkane monooxygenases	182
	3.	5.4.2 Genes responsible for degradation of aromatic hydrocarbon	183
	3.	5.4.3 Genes responsible for desulfurization of sulfur-containing hydroca	rbon
			185
	3.	5.3.2.1 Genes responsible for microbial adaptation and growt	h in
		hydrocarbon contaminated soils	186
	3.5.6	Conclusion	189
3.6	Micro	bial diversity and functional gene capacity of microorganisms in crude	e oil
			190
	3.6.1	Abstract	190
	3.6.2	Introduction	190
	3.6.3	Material and methods	191
		3.6.3.1 TPH analysis	191

3.6.3.2 DNA extraction and DNA sequencing using the Illumina Hiseq platform 192

		3.6.3.3 Data analysis	192
		3.6.3.4 Nucleotide sequence accession numbers	193
	3.6.5	Results and discussion	193
		3.6.5.1 Gas chromatograph assays	193
		3.6.5.2 Statistics of sequences produced by HiSeq Illumina	193
		3.6.5.3 Phylogenetic compositions of the bacterial communities	194
	3.6.5.4 Global gene expression and metabolic potential of the cru		e oil
microbiome		198	
		3.6.5.5 Additional genes involved in microbial survival in crude oil	206
	3.6.6	Conclusion	208
3.7	3.7 Identification of a new operon involved in desulfurization of Dibenzothiop		nes
using a metagenomic study and cloning and functional analysis of the genes 211		211	
	3.7.1	Abstract	211
	3.7.2	Introduction	211
	3.7.3	Material and Methods	212
	3.7.3.1	Gene sequence and Primer design	212
	3.7.3.2	Gene cloning and enzyme assay	213
	3.7.3.3	Accession number	215
	3.7.3.4	Results and discussion	215
Chapter 4. Summary, conclusions and outlooks		220	
Refere	ences		223

Abstract

Hydrocarbons are relatively recalcitrant compounds and are classified as high priority pollutants. However, these compounds are slowly degraded by a large variety of aerobic and anaerobic microorganisms. Although the corresponding genes in many phylogenetic groups of microbial species show different levels of diversity in terms of the gene sequence, the organisation of the genes in the genome or on plasmids and the activation mode of several microorganisms show identical hydrocarbon degrading genes.

Since the majority of microorganisms in natural environments cannot be cultured in laboratory media, culture-based systems are unable to estimate the full microbial diversity of an environment. Metagenomic methods, however, employ sequencing procedures for the determination of the microbial diversity of a community and for examining a particular functional ability of microorganisms in the environment using genomic DNA obtained directly from environmental samples. Application of metagenomic methods provides a huge amount of data that can be analysed only by using powerful computational bioinformatics tools.

In this study, we used next generation technology and metagenomic analysis to investigate the microbial diversity in crude oil and crude oil contaminated soils and to find the functional genes involved in the degradation of hydrocarbons in crude oil. The findings from this study can be used for bioremediation of crude oil spills and also for improvement of the quality of crude oil derivatives in terms of removal of sulfur and nitrogen. As a part of this study, we report a list of microorganisms that are abundant in the crude oil and the crude oil contaminated soil. Furthermore, we found a new operon responsible for removal of sulfur from dibenzothiophenes. The three genes in this operon were cloned and their activities measured in cell free condition.